Knowledgator Docs
GitHubDiscord
  • 🛎️Welcome
  • ⚙️Models
    • 🧮Comprehend-it
      • Comprehend_it-base
      • Comprehend_it-multilingual-t5-base
    • 🦎UTC
  • 👷Frameworks
    • 💧LiqFit
      • Quick Start
      • Benchmarks
      • API Reference
        • Collators
          • NLICollator
          • Creating custom collator
        • Datasets
          • NLIDataset
        • Losses
          • Focal Loss
          • Binary Cross Entropy
          • Cross Entropy Loss
        • Modeling
          • LiqFitBackbone
          • LiqFitModel
        • Downstream Heads
          • LiqFitHead
          • LabelClassificationHead
          • ClassClassificationHead
          • ClassificationHead
        • Pooling
          • GlobalMaxPooling1D
          • GlobalAbsAvgPooling1D
          • GlobalAbsMaxPooling1D
          • GlobalRMSPooling1D
          • GlobalSumPooling1D
          • GlobalAvgPooling1D
          • FirstTokenPooling1D
        • Models
          • Deberta
          • T5
        • Pipelines
          • ZeroShotClassificationPipeline
  • 📚Datasets
    • Biotech news dataset
  • 👩‍🔧Support
  • API Reference
    • Comprehend-it API
    • Entity extraction
      • /fast
      • /deterministic
      • /advanced
    • Token searcher
    • Web2Meaning
    • Web2Meaning2
    • Relation extraction
    • Text2Table
      • /web2text
      • /text_preprocessing
      • /text2table
      • /merge_tables
Powered by GitBook
On this page
  1. 👷Frameworks
  2. 💧LiqFit

Benchmarks

Test results of the LiqFit approach on various datasets using various models.

The models were trained and given different amounts of examples per single class. The F1 score is reported in the table below.

Model & examples per label
Emotion
AgNews
SST5

Comprehend-it/0

56.60

79.82

37.9

Comprehend-it/8

63.38

85.9

46.67

Comprehend-it/64

80.7

88

47

SetFit/0

57.54

56.36

24.11

SetFit/8

56.81

64.93

33.61

SetFit/64

79.03

88

45.38

LiqFit used knowledgator/comprehend_it-base model, while for SetFit, we utilzed BAAI/bge-base-en-v1.5.

PreviousQuick StartNextAPI Reference

Last updated 1 year ago