Installation
To begin using the GLiClass model, you can install the GLiClass Python library through pip, conda, or directly from the source.
Install via Pip
pip install gliclass
Install from Source
To install the GLiClass library from source, follow these steps:
-
Clone the Repository:
First, clone the GLiClass repository from GitHub:
git clone https://github.com/Knowledgator/GLiClass -
Navigate to the Project Directory:
Change to the directory containing the cloned repository:
cd GLiClass -
Install Dependencies:
tipIt's a good practice to create and activate a virtual environment before installing dependencies:
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate -
Install the GLiNER Package:
Finally, install the GLiClass package using:
pip install -U .tipUse
pip install -U -e .to install in editable mode -
Verify Installation:
You can verify the installation by importing the library in a Python script:
import gliclass
print(gliclass.__version__)
Optional Accelerators
GLiClass supports optional flash attention backends for enhanced performance with specific model types.
FlashDeBERTa (for DeBERTa v2 models)
For accelerated inference with DeBERTa v2 models, install FlashDeBERTa:
pip install flashdeberta
When available, DeBERTa v2 models automatically use FlashDebertaV2Model instead of the standard implementation.
To explicitly enable FlashDeBERTa:
export USE_FLASHDEBERTA=1
TurboT5 (for T5/mT5 models)
For accelerated inference with T5 and mT5 models, install TurboT5:
pip install turbot5
When available, T5 and mT5 models automatically use FlashT5EncoderModel.
To activate TurboT5:
export TURBOT5_ATTN_TYPE=triton-basic
Both accelerators are optional and activate automatically when installed. No code modifications are required to benefit from the performance improvements.